LECTURE 14: TAXES

Trevor Gallen

Spring, 2016

Where are we? Taking stock

- We have an equilibrium business cycle model
- We've started adding government in, but we did so in a crazy way: lump-sum taxes
- This isn't how we actually raise revenue!
- We'll try to add more realistic taxes and discuss the distortions they create

GOVERNMENT REVENUE

FEDERAL REVENUE

STATE REVENUE

FEDERAL AND STATE REVENUE TAKEAWAYS

- Customs/import taxes used to be a huge deal
- Now they are not
- For Feds, individual income tax and social-insurance taxes are a big deal
- Seniorage is tiny (why we ignored it last chapter)
- ► For states, property taxes, sales taxes are a big deal
- None of these taxes look remotely like a lump-sum tax

The basic idea:

How do income taxes work?

The basic idea:

Gross income =Income - Personal Exemption - Standard Deduction

Personal exemption in 2015 is \$4000

How do income taxes work?

The basic idea:

- Personal exemption in 2015 is \$4000
- Standard deduction (single) in 2015 is \$6300

The basic idea:

- Personal exemption in 2015 is \$4000
- Standard deduction (single) in 2015 is \$6300
- ▶ So if you made \$15,000, you are taxed on the last \$4,700

How do income taxes work?

The basic idea:

- Personal exemption in 2015 is \$4000
- Standard deduction (single) in 2015 is \$6300
- ► So if you made \$15,000, you are taxed on the last \$4,700
- So why are you guys taxed?

The basic idea:

Gross income =Income - Personal Exemption - Standard Deduction

- Personal exemption in 2015 is \$4000
- Standard deduction (single) in 2015 is \$6300
- ► So if you made \$15,000, you are taxed on the last \$4,700
- So why are you guys taxed?
- Payroll taxes!

For poorer households, payroll is a bigger deal!

The basic idea:

- Personal exemption in 2015 is \$4000
- Standard deduction (single) in 2015 is \$6300
- ► So if you made \$15,000, you are taxed on the last \$4,700
- So why are you guys taxed?
- Payroll taxes!
 - 6.2% to social security + 6.2% from employer
 - ► For poorer households, payroll is a bigger deal!

The basic idea:

- Personal exemption in 2015 is \$4000
- Standard deduction (single) in 2015 is \$6300
- ► So if you made \$15,000, you are taxed on the last \$4,700
- So why are you guys taxed?
- Payroll taxes!
 - 6.2% to social security + 6.2% from employer
 - 1.45% to Medicare + 1.45% from employer
 - For poorer households, payroll is a bigger deal!

AVERAGE AND MARGINAL

- Both average and marginal tax rates matter
- Average tax rate answers the question "how much do I take home if I earn \$100 total?"
- Marginal tax rate answers the question "if I work one more hour, how much do I get to keep?"
- Imagine you're working 2000 hours at \$10/hour and thinking about adding another hour. Think about two scenarios:
 - 1. Your average tax rate is 20% but your marginal tax rate is 0%.
 - 2. Your average tax rate is 20% but your marginal tax rate is 50%
- ▶ In both your current income is $(1 0.2) \cdot $20,000 = $16,000$.
- But in one you give up an hour of leisure for \$10, in the other you give up an hour of leisure for \$5

WHAT ARE THE TAX BRACKETS FOR THE INDIVIDUAL INCOME TAX?

For singles:

Initial	AGI	Income	Payroll	Marginal	Average			
Income		Tax	Tax	Income	Income			
				Tax Rate	Tax Rate			
10,300	0	0	1,575	0%	0%			
19,525	9,225	922	2,987	10%	10%			
47,750	37,450	5,156	7,306	15%	14%			
101,050	90,750	18,481	15,460	25%	20%			
199,600	189,300	46,075	17,595	28%	24%			
421,800	411,500	119,401	27,945	33%	29%			
423,500	413,200	119,996	27,945	35%	29%			
1,010,300	1,000,000	352,369	27,945	39.60%	35%			

Taxes as a function of income

Note: this table is a sketch, I didn't include some nitty-gritty rules like personal exemption phase-out.

MARGINAL INCOME TAX RATES

MARGINAL INCOME + PAYROLL TAX RATES

X-axis is in employer post-tax dollars paid

IMPLICIT MARGINAL TAX RATES

X-axis is in employer post-tax dollars paid Includes EITC, Medicaid, and ACA Exchange Subsidies valued dollar for dollar

INCOME TAX RETURNS ARE VERY SKEWED!

Tercent of Taxes Faid by Top X/8 income Households						
Year	Top 1%	Top 5%	Top 10%	Top 25%	Top 50%	
1970	16.7%	31.4%	41.8%	62.2%	83.0%	
1980	17.4%	33.7%	45.0%	66.6%	87.0%	
1990	25.1%	43.6%	55.4%	77.0%	94.2%	
2000	37.4%	56.5%	67.3%	84.0%	96.1%	

Percent of Taxes Paid by Top X% Income Households

Numbers in black are percent of total income taxes paid

INCOME TAX RETURNS ARE VERY SKEWED!

Year	Top 1%	Top 5%	Top 10%	Top 25%	Top 50%	
1970	16.7%	31.4%	41.8%	62.2%	83.0%	
	7.4	18.3	28.0	49.4	74.7	
1980	17.4%	33.7%	45.0%	66.6%	87.0%	
	7.8	19.2	29.1	51.4	76.7	
1990	25.1%	43.6%	55.4%	77.0%	94.2%	
	14.0	27.6	38.8	62.1	85.0	
2000	37.4%	56.5%	67.3%	84.0%	96.1%	
	20.8	35.3	46.0	67.2	87.0	

Percent of Taxes Paid by Top X% Income Households

Numbers in black are percent of total income taxes paid

Numbers in red are percent of income earned

Taxes aren't lump-sum: they change based on income

- Taxes aren't lump-sum: they change based on income
- Taxes are graduated, meaning they increase with income: marginal tax rates rise with income

- Taxes aren't lump-sum: they change based on income
- Taxes are graduated, meaning they increase with income: marginal tax rates rise with income
- Average tax rates "follow" marginal tax rates slowly

- Taxes aren't lump-sum: they change based on income
- Taxes are graduated, meaning they increase with income: marginal tax rates rise with income
- Average tax rates "follow" marginal tax rates slowly
- Marginal tax rates are what matter for most labor market decisions

- Taxes aren't lump-sum: they change based on income
- Taxes are graduated, meaning they increase with income: marginal tax rates rise with income
- Average tax rates "follow" marginal tax rates slowly
- Marginal tax rates are what matter for most labor market decisions
- In order to understand government revenues we need to recognize big skew in income and taxes (can't just use the "average" agent)

- Taxes aren't lump-sum: they change based on income
- Taxes are graduated, meaning they increase with income: marginal tax rates rise with income
- Average tax rates "follow" marginal tax rates slowly
- Marginal tax rates are what matter for most labor market decisions
- In order to understand government revenues we need to recognize big skew in income and taxes (can't just use the "average" agent)
- Average tax rates matter for government revenues (holding constant labor market behavior)

- Let's look at labor income taxes
- Before we had, in a one-period budget constraint:

$$C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

- Let's look at labor income taxes
- Before we had, in a one-period budget constraint:

$$C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

Now we have taxes that are a function of your labor income: $C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T\left(\frac{w}{P}L\right)$

• Where we could have something like: $T\left(\frac{w}{P}L\right) = \tau_w \frac{w}{P}L$, taking τ_w dollars for every extra dollar of labor income you earn

- Let's look at labor income taxes
- Before we had, in a one-period budget constraint:

$$C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

Now we have taxes that are a function of your labor income: $C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T\left(\frac{w}{P}L\right)$

- Where we could have something like: $T\left(\frac{w}{P}L\right) = \tau_w \frac{w}{P}L$, taking τ_w dollars for every extra dollar of labor income you earn
- Plugging this in, we would get:

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- Let's look at labor income taxes
- Before we had, in a one-period budget constraint:

$$C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

Now we have taxes that are a function of your labor income:

$$C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T\left(\frac{w}{P}L\right)$$

- Where we could have something like: $T\left(\frac{w}{P}L\right) = \tau_w \frac{w}{P}L$, taking τ_w dollars for every extra dollar of labor income you earn
- Plugging this in, we would get:

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

 In other words, as far as you're concerned, higher taxes just look like a lower wage

TWO IMPORTANT QUESTIONS

- 1. How does an increase in government expenditures impact labor market behavior?
- 2. How does an increase in government transfers impact labor market behavior?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

What happens to behavior when G (government expenditures) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- τ_w must go up to finance more expenditures
- So households have a lower wage: how does their labor change?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- τ_w must go up to finance more expenditures
- So households have a lower wage: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- τ_w must go up to finance more expenditures
- So households have a lower wage: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign
- From what we've seen in the time series, we think this is around zero

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- τ_w must go up to finance more expenditures
- So households have a lower wage: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign
- From what we've seen in the time series, we think this is around zero
- But that's for the whole wage! A marginal change is mostly substitution!

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- τ_w must go up to finance more expenditures
- So households have a lower wage: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign
- From what we've seen in the time series, we think this is around zero
- But that's for the whole wage! A marginal change is mostly substitution!
- An average rise in taxes spent on government expenditures small effect, a marginal rise has a bigger (negative) effect

What happens to behavior when V (government transfers) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

What happens to behavior when V (government transfers) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

What happens to behavior when V (government transfers) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- τ_w must go up to finance more expenditures
- But transfers also increases!
- So households have a lower wage and higher property income: how does their labor change?

What happens to behavior when V (government transfers) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- But transfers also increases!
- So households have a lower wage and higher property income: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign (call it zero, from before)

What happens to behavior when V (government transfers) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- But transfers also increases!
- So households have a lower wage and higher property income: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign (call it zero, from before)
 - Income effect of more transfers says work less

What happens to behavior when V (government transfers) increases?

$$C + \frac{\Delta B}{P} + \Delta K = (1 - \tau_w) \frac{w}{P} L + r \left(\frac{B}{P} + K\right) + V$$

- But transfers also increases!
- So households have a lower wage and higher property income: how does their labor change?
 - Income effect says work more, substitution effect says work less: ambiguous in sign (call it zero, from before)
 - Income effect of more transfers says work less
- So the total effect is to work less!

SUMMING UP

- The effect of taxes has an unambiguously negative substitution effect on labor
- If the taxes are used to increase transfers then there is no (or only a small) income effect, and the negative substitution effect dominates
- If the taxes are used to finance government transfers, then there is also a income effect that increases labor supply, partially offsetting the substitution effect
- The substitution effect is bigger when it's a marginal tax rate change rather than an average tax rate change, because income changes less when it's a marginal tax rate change
- When thinking about increasing labor income taxes, we'll typically think about the substitution effect dominating
- This yields a decline in the *effective* wage rate, so a decline in labor supply

FOR DISTORTIONARY TAXATION

INCREASE IN THE LABOR-INCOME TAX RATE: LABOR SUPPLY

Figure 13.5 Effect of an Increase in the Labor-Income Tax Rate on the Labor Market

INCREASE IN THE LABOR-INCOME TAX RATE: CAPITAL SERVICES

Figure 13.8 Effect of an Increase in the Labor-Income Tax Rate on the Market for Capital Services

WHAT ABOUT A TAX ON ASSET INCOME?

- So far we've only looked at labor income taxation
- Depending on what distortionary tax we use and how we spend it, we think it either decreases or keeps labor the same
- What about taxes on asset income? Capital gains taxes, for instance, property taxes, estate tax?

$$C + \frac{\Delta B}{P} + \Delta K = \frac{w}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

WHAT ABOUT A TAX ON ASSET INCOME?

- So far we've only looked at labor income taxation
- Depending on what distortionary tax we use and how we spend it, we think it either decreases or keeps labor the same
- What about taxes on asset income? Capital gains taxes, for instance, property taxes, estate tax?

$$C + \frac{\Delta B}{P} + \Delta K = \frac{W}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

Labor income taxes hit wages

WHAT ABOUT A TAX ON ASSET INCOME?

- So far we've only looked at labor income taxation
- Depending on what distortionary tax we use and how we spend it, we think it either decreases or keeps labor the same
- What about taxes on asset income? Capital gains taxes, for instance, property taxes, estate tax?

$$C + \frac{\Delta B}{P} + \Delta K = \frac{W}{P}L + r\left(\frac{B}{P} + K\right) + V - T$$

- Labor income taxes hit wages
- Capital income taxes hit returns

• Before, I gave up \$1 and get back (1 + r) back tomorrow

- Before, I gave up \$1 and get back (1 + r) back tomorrow
- Now, I'll give up \$1 and get back $(1 + r \tau r)$

- Before, I gave up \$1 and get back (1 + r) back tomorrow
- Now, I'll give up \$1 and get back $(1 + r \tau r)$
- What? What are we taxing here? Shouldn't it be (1 + r)(1 − τ_k)?

- Before, I gave up \$1 and get back (1 + r) back tomorrow
- Now, I'll give up \$1 and get back $(1 + r \tau r)$
- What? What are we taxing here? Shouldn't it be (1 + r)(1 − τ_k)?
 - It depends. The first taxes gross capital income, while the second taxes net. Most countries do the latter.

- Before, I gave up \$1 and get back (1 + r) back tomorrow
- Now, I'll give up \$1 and get back $(1 + r \tau r)$
- What? What are we taxing here? Shouldn't it be (1 + r)(1 − τ_k)?
 - It depends. The first taxes gross capital income, while the second taxes net. Most countries do the latter.
- So we're just hitting r with our tax. How does this effect behavior? What do interest rates control?
 - Interest rates cause us to defer consumption
 - Interest rates tell us how much capital to utilize

ASSET INCOME TAX ON CONSUMPTION

 Effect of a tax (holding the interest rate constant!) are pretty clear

Save less today

- Consume more today
- Consume less in the future

Before, we chose to maximize:

Net rate of return
$$= \frac{R}{P}\kappa - \delta(\kappa)$$

$$(1- au_k)$$
Net rate of return $= (1- au_k)\left(rac{R}{P}\kappa - \delta(\kappa)
ight)$

Before, we chose to maximize:

Net rate of return
$$= \frac{R}{P}\kappa - \delta(\kappa)$$

Now, we have to maximize:

$$(1- au_k)$$
Net rate of return $= (1- au_k)\left(rac{R}{P}\kappa - \delta(\kappa)
ight)$

How does our choice change? How to we maximize this object?

Before, we chose to maximize:

Net rate of return
$$= \frac{R}{P}\kappa - \delta(\kappa)$$

$$(1- au_k)$$
Net rate of return $= (1- au_k)\left(rac{R}{P}\kappa - \delta(\kappa)
ight)$

- How does our choice change? How to we maximize this object?
- You can't change anything by choosing κ differently! The maximum is exactly the same

Before, we chose to maximize:

Net rate of return
$$= \frac{R}{P}\kappa - \delta(\kappa)$$

$$(1- au_k)$$
Net rate of return $= (1- au_k)\left(rac{R}{P}\kappa - \delta(\kappa)
ight)$

- How does our choice change? How to we maximize this object?
- You can't change anything by choosing κ differently! The maximum is exactly the same
- Statutorially, the capital income tax doesn't fall on demand, so if supply isn't changing neither is demand

Before, we chose to maximize:

Net rate of return
$$= \frac{R}{P}\kappa - \delta(\kappa)$$

$$(1- au_k)$$
Net rate of return $= (1- au_k)\left(rac{R}{P}\kappa - \delta(\kappa)
ight)$

- How does our choice change? How to we maximize this object?
- You can't change anything by choosing κ differently! The maximum is exactly the same
- Statutorially, the capital income tax doesn't fall on demand, so if supply isn't changing neither is demand
- Nothing changes in capital markets!

SUMMARIZING ASSET TAXES

- Capital utilization doesn't change
- But households face lower interest rates
- They save less, consume more
- ▶ In macroeconomy, $C \uparrow$ or C(?), $I \downarrow$ (save less)

TAXES

- Chapters 12 and 13 looked at different forms of taxation and spending
- When you're thinking about how taxes change behavior, you should think about:
 - Is the government spending it on expenditures or transfers?
 - Is it a permanent tax hike or a temporary one?
 - Am I talking about labor, savings/investment, or consumption behavior?
 - Is it lump-sum, an average/across-the-board tax hike, or a marginal tax hike?
 - Is the tax on consumption, labor, or capital?